Checking Thorough Refinement on Modal Transition Systems Is EXPTIME-Complete

Nikola Beneš Jan Křetínský Kim G. Larsen Jiri Srba

Masaryk University, Czech Republic
Aalborg University, Denmark

MEMICS 2009
Modal Transition Systems: Motivation

A specification formalism introduced by K.G. Larsen and B. Thomsen more than 20 years ago.

Step-wise, component-based design of a software system.

- Specifications are gradually **refined** until a concrete system (*implementation*) is produced.
- If the specification satisfies certain properties, so does the implementation.
Modal Transition Systems: Example

\[\rightarrow \text{must} \text{ transitions} – \text{required behavior} \]

\[\longrightarrow \text{may} \text{ transitions} – \text{allowed behavior} \]

\[S_1 \rightarrow \text{coin} \rightarrow \bullet \]

\[\text{tea} \]

\[\text{coffee} \]
Modal Transition Systems: Example

\[S_1 \xrightarrow{\text{coin}} \]

\[I_1 \xrightarrow{\text{coin}} \]

\[\text{must transitions} \text{ – required behavior} \]

\[\text{may transitions} \text{ – allowed behavior} \]
Modal Transition Systems: Example

→ must transitions – required behavior
--→ may transitions – allowed behavior

\[S_1 \bullet \xrightarrow{\text{coin}} \bullet \quad S_2 \bullet \xleftarrow{\text{coin}} \bullet \]

\[I_1 \bullet \xrightarrow{\text{coin}} \bullet \]

Jan Křetínský

Thorough Refinement Is EXPTIME-Complete
Modal Transition Systems: Example

→ must transitions – required behavior
---→ may transitions – allowed behavior

\[S_1 \quad \text{tea} \quad \text{coffee} \]
\[S_2 \quad \text{tea} \quad \text{coffee} \]

\[I_1 \quad \text{coin} \quad \text{coffee} \]
\[I_2 \quad \text{coin} \quad \text{coffee} \]
Modal Transition Systems: Example

→ must transitions – required behavior
→→ may transitions – allowed behavior

\[S_1 \quad S_2 \quad I_1 \quad I_2 \quad I_3 \]

\[\begin{align*}
S_1 & \xrightarrow{\text{coin}} \quad \xleftarrow{\text{coffee}} \quad \xrightarrow{\text{tea}} \\
S_2 & \xrightarrow{\text{coin}} \quad \xleftarrow{\text{coffee}} \quad \xrightarrow{\text{tea}} \\
I_1 & \xrightarrow{\text{coin}} \quad \xleftarrow{\text{coffee}} \\
I_2 & \xrightarrow{\text{coin}} \\
I_3 &
\end{align*} \]
Definition

An *MTS* is a triple \((P, \rightarrow, \rightarrow\rightarrow)\) where \(\rightarrow\rightarrow \subseteq \rightarrow\rightarrow\).

An MTS is an *implementation* if \(\rightarrow = \rightarrow\rightarrow\).
Modal and Thorough Refinements

Definition

An *MTS* is a triple \((P, \rightarrow, \longrightarrow)\) where \(\longrightarrow \subseteq \rightarrow\).

An MTS is an *implementation* if \(\longrightarrow = \rightarrow\).

Definition (Modal refinement)

\(S \leq_m T\) if there is a relation \(R\) such that for every \((A, B) \in R\)

- if \(A \rightarrow A'\) then \(B \rightarrow B'\) and \((A', B') \in R\)
- if \(B \rightarrow B'\) then \(A \rightarrow A'\) and \((A', B') \in R\)
Modal and Thorough Refinements

Definition
An MTS is a triple \((P, \rightarrow, \to)\) where \(\to \subseteq \rightarrow\).
An MTS is an implementation if \(\to = \rightarrow\).

Definition (Modal refinement)
\(S \leq_m T\) if there is a relation \(R\) such that for every \((A, B) \in R\)
- if \(A \to A'\) then \(B \to B'\) and \((A', B') \in R\)
- if \(B \rightarrow B'\) then \(A \rightarrow A'\) and \((A', B') \in R\)

Definition (Thorough refinement)
\(S \leq_t T\) if every implementation modally refining \(S\) also modally refines \(T\).
Refinement: Example

![Diagram of a refinement example](image-url)
Modal and Thorough Refinements

\[S \leq_t T, \text{ but } S \not\leq_m T \]
Complexity Issues of Refinement Relations

Modal Refinement Checking Problem
- Given two states S and T in a finite MTS, does $S \leq_m T$?
- P-complete

Thorough Refinement Checking Problem
- Given two states S and T in a finite MTS, does $S \leq_t T$?
- We show it is EXPTIME-complete
- Lower-bound improves previously introduced PSPACE-hardness. [Antonik et al., FOSSACS’09]
- Upper-bound is the first direct, goal-oriented algorithm running in EXPTIME.
 (A sketch of a reduction to validity checking of vectorized modal μ-calculus was given in [Antonik et al., FOSSACS’09])
Reduction from the EXPTIME-complete problem of acceptance for alternating LBA:

1. Encoding of LBA computation trees into implementations.

2. Construct an MTS L which implements almost all encodings of computation trees of LBA (also incorrect ones).

3. Construct an MTS R which implements encodings of all incorrect or non-accepting computation trees of LBA.

4. Show that LBA accepts a string w iff $L \not\leq_t R$.
Alternating Linear Bounded Automaton (LBA)

- Alternating Turing machine where the input word w is given on the tape as $\overleftarrow{w}\overrightarrow{\cdot}$ such that $\overleftarrow{\cdot}$ and $\overrightarrow{\cdot}$ cannot be overwritten.
- Control states divided into existential and universal states. We assume that every universal branching has exactly two successor configurations.

Computation Tree of LBA

- A computation tree is rooted with the initial configuration.
- Every existential configuration has exactly one successor configuration according to the LBA transition function.
- Every universal configuration has exactly two successors according to the LBA transition function.
- A tree is accepting iff every leaf configuration contains the control state q_{acc}.
Configurations

Configurations are written in the form:

\[\vdash w_1 XY q w_2 \]

where the control state \(q \) is preceded by \(XY \in \{ \forall 1, \forall 2, \exists^* \} \).

- \(\forall 1 \) \ldots the previous configuration was universal and the first successor was chosen
- \(\forall 2 \) \ldots the previous configuration was universal and the second successor was chosen
- \(\exists^* \) \ldots the previous configuration was existential
For example a configuration

$$\frac{a \forall 1 q b}{\vdash}$$

of an LBA is encoded as
For example a configuration
\[\vdash a \forall 1 q b \]
of an LBA is encoded as

Encoding of a part of a computation tree with universal branching
Specification L

code of initial configuration of the LBA

$\vdash \ldots \vdash \{\forall\}$

M

1 2

\forall

Jan Křetínský

Thorough Refinement Is EXPTIME-Complete
Encoding of an accepting computation tree is an implementation of \(L \).

In every implementation of \(L \) (the encoding of) a universal configuration has always both successors.
Specification R

Intuition

Implementations of R should be all encodings of *incorrect* or *non-accepting* computation trees of the given LBA.

Assume a given LBA M with an input string $w = w_1 \ldots w_n$.

- Configurations of M are of length $n + 5$ ($\vdash, \dashv, \forall/\exists, 1/2/\ast, q$).
- **Bad sequence** is a sequence $c_1c_2c_3c_4c_5 \ldots d_1d_2d_3d_4d_5$ such that $c_1 \ldots c_5$ and $d_1 \ldots d_5$ do not form a legal computation window in M.

n symbols
Specification R

Intuition
Implementations of R should be all encodings of incorrect or non-accepting computation trees of the given LBA.

Goal
Let $I \leq_m L$.
- If I contains a path with a bad sequence, or
- if I has a branch that does not contain the state q_{acc},
then $I \leq_m R$.

For every illegal window $c_1 c_2 c_3 c_4 c_5 \ldots d_1 d_2 d_3 d_4 d_5$
For every illegal window \(c_1 c_2 c_3 c_4 c_5 \ldots d_1 d_2 d_3 d_4 d_5 \)
For every illegal window \(c_1 c_2 c_3 c_4 c_5 \ldots d_1 d_2 d_3 d_4 d_5 \).
For every illegal window $c_1 c_2 c_3 c_4 c_5 \ldots d_1 d_2 d_3 d_4 d_5$
Specification R — Preliminary Version

For every illegal window $c_1 c_2 c_3 c_4 c_5 \ldots d_1 d_2 d_3 d_4 d_5$.

Exponentially many paths!
Encoding of LBA Configurations

For example a configuration

\[\Gamma \vdash a \forall 1 q b \]

of an LBA is encoded as
Specification R — Bad Paths

\[
\begin{align*}
\text{All} & \setminus \{q_{\text{acc}}\} \\
R & \xrightarrow{\pi} \bullet \xrightarrow{\sigma} \bullet \xrightarrow{\pi} \bullet \xrightarrow{\sigma} \cdots \xrightarrow{\pi} \sigma \xrightarrow{\pi} \sigma \xrightarrow{\pi} \cdots \xrightarrow{\pi} \sigma \xrightarrow{\pi} d_1 \xrightarrow{\sigma} \cdots \xrightarrow{\sigma} d_5 \\
\end{align*}
\]
Specification R — Universal Choice

$\forall \sigma \cdot \pi_1 \ldots$
code of initial configuration of the LBA

for all \(a \in \text{All} \setminus \{\forall\} \)
Summary:

- Given an alternating LBA M with input w we constructed MTSs L and R, both of polynomial size in M and w.
- If M does not accept w then $I \leq_m L$ implies that $I \leq_m R$, hence $L \leq_t R$.
- If M accepts w then let I be the encoding of an accepting computation tree. Clearly $I \leq_m L$ but $I \nleq_m R$, hence $L \nleq_t R$.
EXPTIME-Hardness

Summary:

- Given an alternating LBA M with input w we constructed MTSs L and R, both of polynomial size in M and w.
- If M does not accept w then $I \leq_m L$ implies that $I \leq_m R$, hence $L \leq_t R$.
- If M accepts w then let I be the encoding of an accepting computation tree. Clearly $I \leq_m L$ but $I \not\leq_m R$, hence $L \not\leq_t R$.

Theorem

Checking thorough refinement on finite MTSs is EXPTIME-hard.

Theorem

Checking thorough refinement on finite MTSs is EXPTIME-hard even if the left-hand side process is fixed.
Containment in EXPTIME — Tableau Method

\[A \not\leq_t B \quad \text{iff} \quad \exists I : I \leq_m A \text{ but } I \not\leq_m B \]

We call such a pair \((A, B)\) consistent.

Show consistency of a goal \((A, B)\)

by showing consistency for a number of subgoals.
Containment in EXPTIME — Tableau Method

\[A \nsubseteq_t B \quad \text{iff} \quad \exists I : I \leq_m A \text{ but } I \nsubseteq_m B \]

We call such a pair \((A, B)\) consistent.

Show consistency of a goal \((A, B)\) by showing consistency for a number of subgoals.

- If \(B \xrightarrow{a} B' \) for some \(B' \) such that
 - for all \(A \xrightarrow{a} A_i \), the pairs \((A_1, B'), \ldots, (A_k, B')\) are consistent
 - then \((A, B)\) is consistent too.

- If \(A \xrightarrow{a} A' \) for some \(A' \) such that
 - for all \(B \xrightarrow{a} B_i \), the tuple \((A', B_1, \ldots, B_k)\) is consistent
 - then \((A, B)\) is consistent too.
Containment in EXPTIME — Tableau Method

\[A \not\leq_t B \iff \exists I : I \leq_m A \text{ but } I \not\leq_m B \]

We call such a pair \((A, \overline{B})\) consistent.

Show consistency of a goal \((A, \overline{B})\)
by showing consistency for a number of subgoals.

- If \(B \xrightarrow{a} B'\) for some \(B'\) such that
 - for all \(A \xrightarrow{a} A_i\), the pairs \((A_1, \overline{B'}), \ldots, (A_k, \overline{B'})\) are consistent
 - then \((A, \overline{B})\) is consistent too.

- If \(A \xrightarrow{a} A'\) for some \(A'\) such that
 - for all \(B \xrightarrow{a} B_i\), the tuple \((A', \overline{B_1}, \ldots, \overline{B_k})\) is consistent
 - then \((A, \overline{B})\) is consistent too.

Problem: for this rule we need **tuples**, not only pairs!
By generalizing the tableau rules to tuples of the form \((A, B_1, \ldots, B_k)\) we can prove the following theorem.

Theorem

Thorough refinement checking on finite MTS is decidable in EXPTIME.

Proof: least fixed-point computation of all consistent tuples (there are exponentially many of them).

Corollary

If the right-hand side MTS is deterministic or of a fixed size, the problem is decidable in P.
Conclusion

- We proved that thorough refinement checking is EXPTIME-complete.

- This was the last open problem in the area (common implementation problem on MTS, consistency checking and thorough refinement on mixed transition systems were already known to be EXPTIME-complete).

- Possible solutions to deal with the high complexity:
 - Use the modal refinement relation instead of thorough refinement (over-approximation).
 - Consider only deterministic specifications (right-hand side processes).