Algorithms for Computing Coverability Graphs for Hybrid Petri Nets

Petr Novosad and Milan Češka

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic

MEMICS 2008
Outline

1. Introduction
2. Hybrid Petri Nets
3. Coverability Graphs
4. Conclusion
Introduction.

- Petri nets.
- Reachability graphs.
- Coverability graphs.
Hybrid Petri Nets.

- Authors David and Alla.
- Fluidification of discrete Petri net.
- Continuous and hybrid marking.
- Enabled transitions and enabling degree.
- Continuous and hybrid macro-marking.
Coverability graphs for bounded hybrid Petri nets.

\[G_{hb} = (N, E) \]

\[N \subseteq (\mathbb{R}^+ \cup \{ c_1, \ldots, c_{|P_C|}\})^{|P_c|} \times \mathbb{N}^{|P_D|} \]

\[E \subseteq N \times T \times ((\mathbb{Q}^+ \setminus \{0\}) \cup \{ c_1, \ldots, c_{|P_C|}\}) \times N \]
Algorithm 1

Method:

\begin{verbatim}
begin
 AddNewNode(M_0);
 while exists a node n \in N such that n is unprocessed do
 Flag the node n as processed;
 F = GetEnabledTransitions(n);
 for each transition t \in F do
 Q = GetEnablingDegrees(n, t);
 for each degree q \in Q do
 m' = FireTransition(n, t, q);
 if a node with m' does not exist in N then
 AddNewNode(m');
 end
 end
 n' = GetNode(m');
 if an edge \langle n, t, q, n' \rangle does not exist in E then
 AddNewEdge(n, t, q, n');
 end
 end
 end
end
\end{verbatim}
Coverability graph example.
Coverability graph example.
Coverability graph example.
Coverability graphs for unbounded hybrid Petri nets.

- $G_{hu} = (N, E)$
 - $N \subseteq (\mathbb{R}^+ \cup \{\omega\} \cup \{c_1, \ldots, c_{|P_c|}\})^{|P_c|} \times (\mathbb{N} \cup \{\omega\})^{|P_D|}$
 - Macro-markings with ω symbol.
Algorithm 2

Method:
- FireTransition()
 - Macro-markings with ω symbol.
 - Propagation to succeeding macro-markings.
Coverability graph example.
Coverability graph example.

- $(0,0,0,0,1)$
 - T_3 to $(1,0,1,0,0)$
- $(1,0,1,0,0)$
 - T_1 to $(1,1,1,0,0)$
 - T_2 to $(1,0,1,\omega,0)$
- $(1,1,1,0,0)$
 - T_1 to $(1,0,1,\omega,0)$
 - T_3 to $(0,\omega,0,0,1)$
- $(1,0,1,\omega,0)$
 - T_2 to $(1,0,1,\omega,0)$
 - T_3 to $(0,\omega,0,\omega,1)$
- $(0,\omega,0,0,1)$
 - T_3 to $(0,\omega,0,\omega,1)$
Coverability graph example.
Conclusion

Summary:
- Definitions of coverability graphs.
- Algorithms for their computation.

Future work:
- Tool implementation.
Thank you for your attention.

Questions